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A method based on the Fourier transform theory is proposed to determine the probability density
function from a given set of random samples. First the Fourier transform of the probability density
function is obtained from the set. If the transform has a long tail, it is to be smoothed. Then an ap-
propriate window is applied to the transform. The inverse of the resulting transform yields the probabil-
ity density function. The present method is applied to several examples and is shown to be very effective.

PACS number(s): 02.70.Lq, 02.50.Ng, 51.50.+v, 47.45.—n

I. INTRODUCTION

The Monte Carlo particle simulation has been widely
used in the analysis of rarefied flow [1,2] and glow
discharge [3,4]. Each particle has velocity (energy) and
position. A set of particles in a small cell of computa-
tional domain contains information reflecting the struc-
ture of the velocity distribution function at the center of
the cell. Let x;,x,, ... be the velocities (energies) of the
particles in the cell and 4 (x) be the velocity (energy) dis-
tribution function at the cell center. Then the set
{x1,%,, ...} should be regarded as a set of random sam-
ples taken out from the distribution function 4 (x), which
is mathematically the probability density function (PDF).

Often we need to determine the PDF from a given set
of random samples [5,6]. Simple counting is the most
widely used method to determine the PDF: the x space is
divided into discrete intervals; the number of samples in
each interval is counted. Recently Ventzek and Kitamori
[7] proposed an elaborate method to use the distribution
of samples in the interval. Here we present a quite
different method based on the theory of the Fourier
transform [8]. The effectiveness of our method is ascer-
tained by several example calculations.

II. METHOD

Let {x;;i=1,...,N} be a set of random samples for
the probability density function 4 (x), which is assumed
to be a continuous function. The number N is called the
sample size. It may be the number of particles at a fixed
time for unsteady stochastic processes or the whole sum
of the number of particles counted at successive sampling
times for stationary processes. Here we propose a
method to determine A (x) from a given set {x;}. If the
sample size N is sufficiently large, 4 (x) can be approxi-
mated by [9]

— 1 N
h(x)—7v—i§18(x—x,~) , (1)

where & is the delta function. Although h(x) has a
discrete form, integrations of 4 (x) and A (x) over an arbi-
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trary interval yield the same value as N— . The
Fourier transform H of Eq. (1) is [8]

— 1 .

H(f)=F2exp(—121rx,-f), (2)

where j =V —1 and the summation is over i=1to i=N
hereafter. Let H(f) be the Fourier transform of A (x).
The principle idea of the present work is based on the
fact that the functional form of H(f) tends to H(f) as
N — . The fact makes it possible to obtain an approxi-
mation of h(x) from the inverse Fourier transform of
H(f), not H(f). Let us write H(f)=R(f)+jI(f). We
then have

E(f)=—11\72cos27rxif, 3)

T(f)=— % S sin2mx,f . (@)

Of course, R and T are continuous functions of f. Recall
that 4 (x) is a discrete function. We now show that R(f)
and T(f) are, respectively, good approximations of R (f)
and I(f), where H(f)=R (f)+jI(f). The details of the
present method and its effectiveness are best explained by
several examples.

A. Gaussian distribution

The velocity distribution function takes the following
form in equilibrium:

h(x)ZL—exp(—xz) (—o<x<). (5)
vV
The Fourier transform of 2 (x) is
R(f)=exp(—72f?) . (6)

The imaginary part vanishes. We make a set of random
samples of size N from Eq. (5).

x;=(—InU;)"%in27U, (i=1,...,N). o)
Hereafter U; (i=1,2,...) denotes the independent ran-

dom number uniformly distributed between 0 and 1.
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Substitution of Eq. (7) into Eq. (3) gives R(f). Let us
determine the PDF from R(f). We suppose that the
PDF is known in advance to be an even function of x. So
we set I(f)=0. Figure 1 shows R(f) and R(f) for
N=10% 10 and 10*. The solid line represents the exact
transform R (f). The function R(f) depends on the set
{x;] employed, especially for small sample size. To find
the two R(f)’s which show the largest positive and nega-
tive deviation from the exact R(f), we tried 1000 in-
dependent sets of {x;] for N=10% and 100 sets for
N=10* and N =10*. The dashed and dotted lines in Fig.
1 are these worst two. The two are soon used to deter-
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FIG. 1. Fourier transforms for N =10?%, 103, and 10*.
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mine the error bound for the PDF.

Let us consider the inverse Fourier transform of R (f).
As for the calculation of the inverse by the fast Fourier
transform, see Ref. [8]. We denote the inverse by 7 (x)
since % (x) is neither equal to the discrete % (x) nor to the
exact h(x). Let x, be the period in space domain. It is
divided into n equal intervals, so that the spatial sampling
interval Ax is x,/n. The period f, in the frequency
domain is 1/Ax, the frequency sampling interval Af be-
ing f,/n (=1/x,). Both Ax(=1/f,)and Af (=1/x,)
should be small for the inverse to be accurate, which re-
quires the use of large f, and x,. Our choice is f,=25
and n =29, hence Ax =0.04 and Af =0.0244.

We obtained the inverse A (x) of R (f) and found that it
is poor even for N =10* This is because the accuracy of
R(f) is poor for large f. The rectangular window [8]
W(f) is applied to R(f) to cut off the inaccurate tail of
R(f); W(f)=1for |f| < f, and W(f)=0 for | f|> f., f.
being 0.7 for all N. The dashed and dotted lines in Fig. 2
show the inverse A(x) of W(f)R(f). These two lines
denote the upper and lower bounds of % (x) for a given N.
The solid line represents the exact 4(x). The error bound
is narrow for N =10* but wide for N =102 Some users of
the Monte Carlo method say that they found an accurate
PDF for such a small sample size as 102. However, such
agreement should be regarded as accidental. One of the
advantages of the present method is to make it possible to
examine systematically the error bound of the PDF for a
given sample size.

B. Bimodal distribution

The velocity distribution function 4 (x) of electrons is
bimodal in glow discharge [5]. It is

172
exp(—ax?)

h(ix)=A4

172

+(1—4) exp(—Bx?%) (—w<x<ow),

3 ™

(8)

where 0< A <1, >0, and >0. If x denotes a com-
ponent of velocity, a and B are inversely proportional to
the mean energy. The Fourier transform H (f) is

. _77.2 2
H(f)= A exp o ]
202
+(1— A)exp —-”Bf . ©)

We consider the case of 4 =21. Then a set of random

samples of size N for Eq. (8) is

x;=(—a 'InU,)"?sin27U, (i=1,...,N/2), (10a)

x;=(—B 'InU,;)"%sin27U, (i=N/2+1,...,N).
(10b)
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The procedure to obtain H(f) and its inverse % (x) is the
same as that of case 4. The PDF is shown only for
N=10* in Fig. 3. The parameters are a=1 and 8=0.1.
Since B is small, the second term of Eq. (8) has a longer
tail. The cut-off frequency f, for the rectangular window
is set of 0.7. The solid line in Fig. 3 represents the exact
h(x) and the dashed line the inverse 4 (x). The latter is
obtained for f, =25 and n =211, We see that /(x) is fair-
ly accurate even for large x, where the PDF is small.
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C. Exponential distribution

The Fourier transforms H (f) for cases 4 and B rapid-
ly decreases as f increases. A special treatment is neces-
sary if H (f) decays slowly. Such an example is

hix)=e™™* (x20). (11)
The transforms are
1 27 f
R(f)=——, I(f)=————. 12
oA 1+Qaf)? ) 1+Q2nf)? 12
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FIG. 2. Probability density functions for N =107, 10° and
104

We see that R~f 2 and I~f"! as f—>o. Also we
should be careful at the discontinuity of A(x) at x =0 [8].
The samples are

x;=—InU; (i=1,...,N).

The dashed lines in Fig. 4 show the real part R(f) for
N=10% 10% and 10*. The imaginary part I(f) is shown
in Fig. 5. The solid lines represent the exact transform of
Eq. (12). We see that H(f) is accurate for N=10* but
rather poor for N =10% and 10° except the region of small
f. [Note that we here omit the consideration of the error
bound for H(f); H(f) for each N is obtained only for one
set of {x;}.] In case of N=10% and 10° the inverse of
H(f) is poor if H(f) is used as it stands. Moreover, since
the transform has a long tail, we cannot apply the rec-
tangular window to H(f) to cut off the inaccurate part of
H(f). We propose the following method to treat the
inaccurate tail of H(f). The method is applicable, in
general, whenever H(f) decays slowly.

Let R(f) and I(f) be the real and imaginary parts of
H(f). We use R(f) and I(f) up to f = f,, at which R(f)
and I(f) are still accurate. The frequency f, can be es-
timated from the behavior of R(f) and I(f). Since R(f)
is an even function and I(f) is an odd function of f, we
write for f > f as

R(f)=R(f,)g¥1—a+ag?) ,
I(f)=T1(f,)g(1—b+bg?),

(13a)
(13b)

where g =f,/f. Higher order terms are disregarded.
Equation (13) holds at f=f,. The coefficients a and b
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are determined by means of the least-squares error-
regression analysis of the original data of R(f) and I(f)
for f > f,. They are
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where R, =R(f)/R(fo), I =I(fi)/I(f), 8 =Fo/fr>
and f.’s (> f,) are appropriate sampling frequencies
such as f; =f,+0.01k, k being 1,2, . . ..

In the case of N=10% and 10° the functions R (f) and
I(f) are smoothed for f > f, by use of Eq. (13). The dot-
ted lines in Figs. 4 and 5 represent Eq. (13). The connect-
ing frequency f, is 0.4 for N=10% and 0.6 for N=103.
In the case of N=10* there is no need to apply such a
smoothing.

Let us consider the window W(f). Since the Fourier
transform for case C has a long tail, W (f) is best applied
to the whole period in the frequency domain, i.e., to
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lFI<f »/2. When the transform has a long tail, the rec-
tangular window W (f) is not the best one; the inverse of
W(f)H(f) is oscillatory in a region of small x in the
space domain. This is true even if we consider the inverse
of W(f)H(f), where H(f) is the exact transform. We
found that the oscillation is fairly damped if the Hanning
window [8] with the following form is used:

W(f)=0.8+0.2cos(27f /f,) . (14)

Now the inverse of W (f)H(f) is almost satisfactory but
it still shows a slight oscillation. To eliminate this, the in-
verse is locally smoothed by use of the least-squares
analysis. The resulting PDF is shown in Fig. 6 for
N=10? (dashed line), N =10 (dotted line), and N =10*
(symbols), the solid line being the exact PDF. These are
obtained for f, =10 and n=2". Not only the PDF for
N =IQ‘_1 but also that for N =10 is satisfactory. Note
that H(f) for N=10* is not smoothed in frequency
domain. If smoothed, the result would be better.

D. Equilibrium distribution plus smeared beam

In glow discharge electrons in bulk plasma is divided
into two groups, thermal electrons and high-energy beam
electrons [3]. A model of energy distribution function for
such electrons is

h(x)=Ah(x)+(1— A)h,(x),

where 0< 4 <1, h(x) is the equilibrium distribution,
and h,(x) is the Gaussian distribution with narrow
width, i.e.,

hi(x)=2a(ax /m)'% " (x=0), (15)

hy(x)=(B/m)2exp] —B(x —x¢)*] (Ix —xo| <xq) . (16)

The function A,(x) is defined to be zero for |x —x,| >x,
but Eq. (16) can be used for any x since x, is assumed
large here. Let H,(=R,;-+jI,) be the transform of 4.
We have

R,=rcosf, I,=—rsinf,
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where r =a*/?/[a®+ (27 f)*]*/* and =3 tan"'(27f /a).

The transform of A, is

1T2f2
B

We consider the case of 4=1. Then a set of random
samples of size N are

x;=—a [InU, +(sin27U,)*InU;] (i=1,...,N/2),

H,=exp |—j2mfx,—

x;=xo+(—B ' InU,)%sin27 U5
(i=N/2+1,...,N).

Here we consider the case of a=1, =1, and x,=15; the
mean energy of beam electrons is 10 times higher than
that of thermal electrons. To save space we limit our at-
tention to the case of N=10% Let H (=R +jI) be the
exact transform and H (=R +;I) be the approximate
one obtained from Egs. (3) and (4). Figure 7 shows the
real and imaginary parts of the transform. The solid lines
represent the exact R and I and the dashed lines the ap-
proximate R and I. We see that the damping rates for R
and T are higher than those for R and I. The functions R
and T are smoothed for f > 1 by use of Eq. (13). We see
from Eq. (13) that R—f"2and T—f ! as f— . The
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exact R and I tend to f 3’2 as f— . Nevertheless we
use Eq. (13) because we do not know the asymptotic form
of R and T in practical applications. After smoothing, H
is multiplied by the window, Eq. (14). The inverse of WH
is accurate enough. However, the local smoothing in
space domain slightly improves the PDF. The final PDF
is shown in Fig. 8 by the dashed line compared with the
exact PDF (solid line). The calculation is done for
f,=20and n=2°. Although R and T show an apprecia-
ble deviation from the exact R and I in frequency
domain, the PDF is fairly accurate in the space domain.

E. Application to actual simulation of rf discharge

We are now trying to apply the present method to an
actual particle simulation of rf discharge [10]. The ener-
gies of ions incident on the grounded electrode are sam-
pled for various discharge conditions. Here we consider
only one case: the peak-to-peak rf voltage is 2000 V, the
rf frequency is 13.56 MHz, gas (argon) pressure is 42
mTorr, and the distance between parallel electrodes is 64
mm. The number of sampled ions, N, is 12984. The
PDF’s of ion energy resulting from the simple counting
and the Fourier transform method are compared in Fig.
9. Both are obtained for the same energy interval
Ax (=0.25 eV). The procedure to determine the trans-
form and its inverse is the same as that in case C. The
parameters are now chosen as f, =4, n=2", f,=0.3,
and f;, =f,+0.0005k. Since the transform shows a rap-
id oscillation, a large n (small Af) is used. Note that Egs.
(13) and (14) are employed without any modification.
These equations are applicable in general if the Fourier
transform decays slowly. Smoothing the inverse is omit-
ted because it has no effect. We see from Fig. 9 that the
noise in the PDF resulting from the present method is
much smaller than that of the simple counting. Several
spikes in the PDF are typical in the rf discharge. It is
most probable that the present method is applicable to
the PDF with spikes or discontinuities.
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III. CONCLUSIONS

A method to determine the probability density func-
tion (PDF) from a given set of random samples is pro-
posed. First, the effect of sample size on the PDF is sys-
tematically examined. Next, certain rules for the use of
the present method are clarified through various exam-
ples. Let H(f) be the Fourier transform of the PDF ex-
pressed by a set of random samples. General rules are as
follows.

(1) When H(f) decays rapidly, apply the rectangular
window to cut off the inaccurate part of H(f) and then
obtain the inverse Fourier transform.

(2) When H(f) has a long tail, smooth the tail in the
frequency domain by using Eq. (13), apply the Hanning
window of Eq. (14) over the whole period, and obtain the
inverse. If necessary, smooth the PDF in the space
domain.

It may be straightforward to extend the present
method to the case of two- or three-dimensional probabil-
ity density function.
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